Interleukin-1 Stimulates ADAM17 through a Mechanism Independent of its Cytoplasmic Domain or Phosphorylation at Threonine 735
نویسندگان
چکیده
ADAM17 (a disintegrin and metalloproteinase) is a membrane-anchored metalloproteinase that regulates the release of EGFR-ligands, TNFα and other membrane proteins from cells. ADAM17 can be rapidly activated by a variety of signaling pathways, yet little is known about the underlying mechanism. Several studies have demonstrated that the cytoplasmic domain of ADAM17 is not required for its rapid activation by a variety of stimuli, including phorbol esters, tyrosine kinases and some G-protein coupled receptors. However, phosphorylation of cytoplasmic residue T735 was recently reported as a crucial step for activation of ADAM17 by IL-1β and by the p38 MAP-kinase pathway. One possible mechanism to reconcile these results would be that T735 has an inhibitory role and that it must be phosphorylated as a pre-requisite for the activation of ADAM17, which would then proceed via a mechanism that is independent of its cytoplasmic domain. To test this hypothesis, we performed rescue experiments of Adam17-/- cells with wild type and mutant forms of ADAM17. However, these experiments showed that an inactivating mutation (T735A) or an activating mutation (T735D) of cytoplasmic residue T735 or the removal of the cytoplasmic domain of ADAM17 did not significantly affect the stimulation of ADAM17 by IL-1β or by activation of MAP-kinase with anisomycin. Moreover, we found that the MAP-kinase inhibitor SB203580 blocked activation of cytoplasmic tail-deficient ADAM17 and of the T735A mutant by IL-1β or by anisomycin, providing further support for a model in which the activation mechanism of ADAM17 does not rely on its cytoplasmic domain or phosphorylation of T735.
منابع مشابه
The extracellular regulated kinase-1 (ERK1) controls regulated alpha-secretase-mediated processing, promoter transactivation, and mRNA levels of the cellular prion protein.
The α-secretases A disintegrin and metalloprotease 10 (ADAM10) and ADAM17 trigger constitutive and regulated processing of the cellular prion protein (PrP(c)) yielding N1 fragment. The latter depends on protein kinase C (PKC)-coupled M1/M3 muscarinic receptor activation and subsequent phosphorylation of ADAM17 on its intracytoplasmic threonine 735. Here we show that regulated PrP(c) processing ...
متن کاملA1 adenosine receptor–stimulated exocytosis in bladder umbrella cells requires phosphorylation of ADAM17 Ser-811 and EGF receptor transactivation
Despite the importance of ADAM17-dependent cleavage in normal biology and disease, the physiological cues that trigger its activity, the effector pathways that promote its function, and the mechanisms that control its activity, particularly the role of phosphorylation, remain unresolved. Using native bladder epithelium, in some cases transduced with adenoviruses encoding small interfering RNA, ...
متن کاملADAM17 is regulated by a rapid and reversible mechanism that controls access to its catalytic site.
Protein ectodomain shedding is crucial for cell-cell interactions because it controls the bioavailability of soluble tumor necrosis factor-α (TNFα) and ligands of the epidermal growth factor (EGF) receptor, and the release of many other membrane proteins. Various stimuli can rapidly trigger ectodomain shedding, yet much remains to be learned about the identity of the enzymes that respond to the...
متن کاملRole of protein kinase C in the phosphorylation of CD33 (Siglec-3) and its effect on lectin activity.
CD33 (Siglec-3) is a marker of myeloid progenitor cells, mature myeloid cells, and most myeloid leukemias. Although its biologic role remains unknown, it has been demonstrated to function as a sialic acid-specific lectin and a cell adhesion molecule. Many of the Siglecs (including CD33) have been reported to be tyrosine phosphorylated in the cytosolic tails under specific stimulation conditions...
متن کاملActivation of phosphatidylinositol 3-kinase in response to interleukin-1 leads to phosphorylation and activation of the NF-kappaB p65/RelA subunit.
The work of Reddy et al. (S. A. Reddy, J. A. Huang, and W. S. Liao, J. Biol. Chem. 272:29167-29173, 1997) reveals that phosphatidylinositol 3-kinase (PI3K) plays a role in transducing a signal from the occupied interleukin-1 (IL-1) receptor to nuclear factor kappaB (NF-kappaB), but the underlying mechanism remains to be determined. We have found that IL-1 stimulates interaction of the IL-1 rece...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012